Meteor studies in the framework of the JEM-EUSO program

G. Abdellaoui, S. Abe, A. Acheli, J.H. Adams Jr., S. Ahmad, A. Ahriche, J.-N. Albert, D. Allard, G. Alonso, L. Anchordoqui, V. Andreev, A. Anzalone, W. Aouimeur, Y. Arai, N. Arsene, K. Asano, R. Attallah, H. Attoui, M. Ave Pernas, S. Bacholle, M. Bakiri, et al.

Planetary and Space Science
In Press, Accepted Manuscript, Available online 18 December 2016


• Use of the International Space Station for the purpose of meteor observations.
• Observations of meteors at UV wavelengths.
• Possibility to detect nuclearites, possible components of dark matter.
• Possibility to exploit the persistence of meteor trains to derive 3D trajectories.”

“We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.”