Albite dissociation reaction in the Northwest Africa 8275 shocked LL chondrite and implications for its impact history

Masaaki Miyahara, Eiji Ohtani, Akira Yamaguchi

Geochimica et Cosmochimica Acta
In Press, Accepted Manuscript, Available online 26 August 2017


“An impact event recorded in the Northwest Africa (NWA) 8275 LL7 ordinary chondrite was investigated based on high-pressure mineralogy of pervasive shock-melt veins present in the rock. NWA 8275 consists of olivine, low-Ca pyroxene, plagioclase (albite–oligoclase composition), and minor high-Ca pyroxene, K-feldspar, phosphate minerals, metallic Fe–Ni and iron sulfide. Plagioclase and K-feldspar grains near the shock-melt veins have transformed to amorphous, although no high-pressure polymorphs of olivine and pyroxene were identified in or adjacent the shock-melt veins. Raman spectroscopy and focused ion beam (FIB)-assisted transmission electron microscopy (TEM) observations reveal that plagioclase entrained around the center portion of the shock-melt veins has dissociated into a jadeite + coesite assemblage. Alternately stacked jadeite and coesite crystals occurred in the original plagioclase. On approaching the host rock/shock-melt vein, only jadeite is present. Based on the high-pressure polymorph assemblage, the shock pressure and temperature conditions recorded in the shock-melt veins are ∼3–12 GPa and ∼1973–2373 K, respectively. Following a Rankine–Hugoniot relationship, the impact velocity was at least ∼0.45–1.54 km/s. The duration of high-pressure and high-temperature (HPHT) conditions required for the albite dissociation reaction is estimated a maximum of ∼4–5 s using the phase transition rate of albite, implying that a body of up to ∼9–12 km across collided with the parent body of NWA 8275. The coexistence of jadeite and coesite, the latter of which rarely accompanies jadeite in shocked ordinary chondrites, as a dissociation product of albite requires relatively long duration HPHT conditions. Thus, the impact event recorded in NWA 8275 was likely caused by a larger-than-typical projectile.”