A novel organic-rich meteoritic clast from the outer solar systemOPEN ACCESS 

Yoko Kebukawa, Motoo Ito, Michael E. Zolensky, Richard C. Greenwood, Zia Rahman, Hiroki Suga, Aiko Nakato, Queenie H. S. Chan, Marc Fries, Yasuo Takeichi, Yoshio Takahashi, Kazuhiko Mase & Kensei Kobayashi

Scientific Reports 9, 1–8

LINK (OPEN ACCESS)
PDF (OPEN ACCESS)

Supplementary Information (PDF)

“The Zag meteorite which is a thermally-metamorphosed H ordinary chondrite contains a primitive xenolithic clast that was accreted to the parent asteroid after metamorphism. The cm-sized clast contains abundant large organic grains or aggregates up to 20 μm in phyllosilicate-rich matrix. Here we report organic and isotope analyses of a large (~10 μm) OM aggregate in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM aggregate has sp2 dominated hydrocarbon networks with a lower abundance of heteroatoms than in IOM from primitive (CI,CM,CR) carbonaceous chondrites, and thus it is distinguished from most of the OM in carbonaceous meteorites. The OM aggregate has high D/H and 15N/14N ratios (δD = 2,370 ± 74‰ and δ15N = 696 ± 100‰), suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus, the high D/H ratio must have been preserved during the extensive late-stage aqueous processing. It indicates that both the OM precursors and the water had high D/H ratios. Combined with 16O-poor nature of the clast, the OM aggregate and the clast are unique among known chondrite groups. We further propose that the clast possibly originated from D/P type asteroids or trans-Neptunian Objects.”