Temperature dependent grain growth of forsterite–nickel mixtures: Implications for grain growth in two-phase systems and applications to the H-chondrite parent body

J. Guignard, M.J. Toplis, M. Bystricky, M. Monnereau

Earth and Planetary Science Letters
Volume 443, 1 June 2016, Pages 20–31


“Grain growth experiments in the system forsterite (Fo) + nickel (Ni) have been performed on two analogue mixtures of ordinary chondrites, with volume % of Fo:Ni (95:5) and (80:20). These two mixtures have been studied at temperatures of 1390 °C and 1340 °C, at an oxygen fugacity (fO2) three orders of magnitude below the Ni–NiO buffer, for durations between 2 h and 10 days. Microstructures and grain size distributions show that grain growth is normal and that for durations >10 h the Zener relation is verified (i.e., the ratio of Fo and Ni grain size is independent of time). Comparison with results previously obtained at 1440 °C shows a similar grain growth exponent (n∼5n∼5) for both phases, consistent with growth of forsterite by grain boundary migration, limited by the growth-rate of nickel. The details of size distribution frequencies and the value of grain-growth exponent indicate that the nickel grains, which pin forsterite grain boundaries, grow by diffusion along one-dimensional paths (i.e., along forsterite triple junctions). The derived activation energies for nickel and forsterite are 235±33 kJ/mol235±33 kJ/mol and 400±48 kJ/mol400±48 kJ/mol respectively. Within the framework of the Zener relation, this unexpected difference of activation energy is shown to be related to temperature-dependent variations in the ratio of Ni and Fo grain-size that are consistent with observed variations in Fo–Ni–Fo dihedral angle. These data thus indicate that the presence of all phases should be taken into account when considering the activation energy of growth rate of individual phases. As an application, the experimentally derived growth law for metal has been used in conjunction with temperature–time paths taken from models of the thermal history of the H-chondrite parent body to estimate the grain size evolution of metal in H-chondrites. A remarkably self-consistent picture emerges from experimentally derived grain-growth laws, textural data of metal grains in well characterised H-chondrite samples, and geochemically constrained temperature–time paths, providing the potential to use textural data of metal as a window into the thermal history of chondritic samples.”