Variations in impact effects among IIIE iron meteorites

Breen, J. P., Rubin, A. E. and Wasson, J. T.

Meteoritics & Planetary Science. doi: 10.1111/maps.12685


“Group-IIIE iron meteorites can be ordered into four categories reflecting increasing degrees of shock alteration. Weakly shocked samples (Armanty, Colonia Obrera, Coopertown, Porto Alegre, Rhine Villa, Staunton, and Tanokami Mountain) have haxonite within plessite, unrecrystallized kamacite grains containing Neumann lines or possessing the ɛ structure, and sulfide inclusions typically consisting of polycrystalline troilite with daubréelite exsolution lamellae. The only moderately shocked sample is NWA 4704, in which haxonite has been partially decomposed to graphite; the majority of the kamacite in NWA 4704 is recrystallized, and its sulfide inclusions were partly melted. Strongly shocked samples (Cachiyuyal, Kokstad, and Paloduro) contain graphite and no haxonite, suggesting that pre-existing haxonite fully decomposed. Also present in these rocks are recrystallized kamacite and melted troilite. Residual heat from the impact caused annealing and recrystallization of kamacite as well as the decomposition of haxonite into graphite. Severely shocked samples (Aliskerovo and Willow Creek) have sulfide-rich assemblages consisting of fragmental and subhedral daubréelite crystals, 1–4 vol% spidery troilite filaments, and 30–50 vol% low-Ni kamacite grains, some of which contain up to 6.0 wt% Co; haxonite in these inclusions has fully decomposed to graphite. The wide range of impact effects in IIIE irons is attributed to one or more major collision(s) on the parent asteroid that affected different group members to different extents depending on their proximity to the impact point.”