Formation of shatter cones in MEMIN impact experiments.

Wilk, J. and Kenkmann, T.

Meteoritics & Planetary Science. doi: 10.1111/maps.12682

LINK

“Shatter cones are the only macroscopic feature considered as evidence for shock metamorphism. Their presence is diagnostic for the discovery and verification of impact structures. The occurrence of shatter cones is heterogeneous throughout the crater record and their geometry can diverge from the typical cone shape. The precise formation mechanism of shatter cones is still not resolved. In this study, we aim at better constraining the boundary conditions of shatter cone formation in impact experiments and test a novel approach to qualitatively and quantitatively describe shatter cone geometries by white light interferometry. We recovered several ejected fragments from MEMIN cratering experiments that show slightly curved, striated surfaces and conical geometries with apices of 36°–52°. These fragments fulfilling the morphological criteria of shatter cones were found in experiments with 20–80 cm sized target cubes of sandstone, quartzite and limestone, but not in highly porous tuff. Targets were impacted by aluminum, steel, and iron meteorite projectiles at velocities of 4.6–7.8 km s−1. The projectile sizes ranged from 2.5–12 mm in diameter and produced experimental peak pressures of up to 86 GPa. In experiments with lower impact velocities shatter cones could not be found. A thorough morphometric analysis of the experimentally generated shatter cones was made with 3D white light interferometry scans at micrometer accuracy. SEM analysis of the surfaces of recovered fragments showed vesicular melt films alternating with smoothly polished surfaces. We hypothesize that the vesicular melt films predominantly form at strain releasing steps and suggest that shatter cones are probably mixed mode fractures.”