Primordial, thermal, and shock features of ordinary chondrites: Emulating bulk X‐ray diffraction using in‐plane rotation of polished thin sections

Naoya Imae, Makoto Kimura, Akira Yamaguchi, Hideyasu Kojima

Meteoritics & Planetary Science
First Published: 22 February 2019


“Using an X‐ray diffractometer, powder‐like diffraction patterns were acquired from in‐plane rotation of polished thin sections (PTSs) of 60 ordinary chondrites (23 H, 21 L, and 16 LL), in order to explore the thermal and shock metamorphism and its modifications of primordial features. The olivine (Ol) 130 peak position shown as Bragg indices clearly correlates with the chemical group for equilibrated ordinary chondrites (EOCs), while the peak is split or broad for unequilibrated ordinary chondrites (UOCs). The intensity ratio of kamacite may be useful for distinguishing the chemical group between H and L‐LL, but it is not definite because of heterogeneous terrestrial weathering of kamacite, especially in H chondrites. The summed intensities of the orthoenstatite (Oen) 511 and 421 peaks positively correlates with the metamorphic sequence from 3 to 6, while that of clinoenstatite (Cen) 22urn:x-wiley:10869379:media:maps13257:maps13257-math-0005 is inversely correlated. The shock stage positively correlates with the summed full width of half maximum values of the Oen 511 and 421 peaks and the FWHM of Ol 130 peak for each class. Significant amount of Oen (Pbca) transformed through Cen (C2/c) finally to Cen (P21/c) is stable at high pressure for shock stage S6 (Tenham and NWA 4719). The shock melted LL chondrite is characterized by the occurrence of Cen and abundant homogeneous olivine. The effects of both thermal and shock metamorphism are thus incorporated into the bulk X‐ray diffraction (XRD) data. The bulk XRD method is useful for determining the bulk mineralogy, resulting in the classification of ordinary chondrites. The method is also applicable to samples other than PTS.”