Heavy iron isotope composition of iron meteorites explained by core crystallization
Peng Ni, Nancy L. Chabot, Caillin J. Ryan & Anat Shahar
Nature Geoscience , 1–5
Published: 03 August 2020
“Similar to Earth, many large planetesimals in the Solar System experienced planetary-scale processes such as accretion, melting and differentiation. As their cores cooled and solidified, substantial chemical fractionation occurred due to solid metal–liquid metal fractionation. Iron meteorites—core remnants of these ancient planetesimals—record a history of this process. Recent iron isotope analyses of iron meteorites found their 57Fe/54Fe ratios to be heavier than chondritic by approximately 0.1 to 0.2 per mil for most meteorites, indicating that a common parent body process was responsible. However, the mechanism for this fractionation remains poorly understood. Here we experimentally show that the iron isotopic composition of iron meteorites can be explained solely by core crystallization. In our experiments of core crystallization at 1,300 °C, we find that solid metal becomes enriched in the heavier iron isotope by 0.13 per mil relative to liquid metal. Fractional crystallization modelling of the IIIAB iron meteorite parent body shows that observed iridium, gold and iron compositions can be simultaneously reproduced during core crystallization. The model implies the formation of complementary sulfur-rich components of the iron meteorite parental cores that remain unsampled by meteorite records and may be the missing reservoir of isotopically light iron. The lack of sulfide meteorites and previous trace element modelling predicting substantial unsampled volumes of iron meteorite parent cores support our findings.”