Petrography and Shock Metamorphism of the Lunar Breccia Meteorite NWA 13120OPEN ACCESS 

Zhipeng Xia, Bingkui Miao, Chuantong Zhang, Hongyi Chen, Lanfang Xie, P.M. Ranjith, Yikai Zhang, Bowen Si

Minerals 2021, 11(8), 899

LINK (OPEN ACCESS)
PDF (PDF DOWNLOAD)

“Lunar meteorites are the fragments of rocks that fell on Earth because of the impacts of asteroids on the Moon. Such rocks preserve information about the composition, evolutionary process, and shock history of the lunar surface. NWA 13120 is a recently discovered lunar breccia meteorite having features of strong shock, which is composed of lithic and mineral clasts in a matrix of very fine-grained (<10 μm) and recrystallized olivine-plagioclase with a poikilitic-like texture. As the most abundant lithic clasts, the crystalline impact melt (CIM) clasts can be divided into four types according to their texture and mineral composition: (1) anorthosites or troctolitic anorthosite with a poikilitic-like texture, but the mineral content is different from that of the matrix; (2) anorthosites containing basaltic fragments and rich in vesicles; (3) troctolitic anorthosite containing metamorphic olivine mineral fragments; (4) troctolitic anorthosite containing troctolite fragments. Based on the petrology and mineralogy, NWA 13120 is a lunar meteorite that was derived from the ferrous anorthosite suite (FANs) of the lunar highlands, while its texture suggests it is a crystalline impact melt breccia. In addition, we infer that the parent rock of NWA 13120 is a lunar regolith breccia enriched in glass fragments. During the shock process, at pressures of more than 20 GPa, all plagioclase fragments were transformed into maskelynites, and olivine fragments occurred metamorphism. The post-shock temperature led to the partial melting of the basaltic fragments. Subsequently, all glass with diverse components in the parent rock were devitrified and recrystallized, forming the common olivine-plagioclase poikilitic-like texture and different CIM clasts. Meanwhile, the devitrification of maskelynite formed the accumulation of a large number of plagioclase microcrystals. Therefore, NWA 13120 is a meteorite of great significance for understanding the local shock metamorphism of lunar rocks on the lunar surface. “