Xenon in the Protoplanetary Disk (PPD), in Two Planets, and a CometOPEN ACCESS 

Kurt Marti and K. J. Mathew

The Astrophysical Journal, Volume 940, Number 1
Published: 16 November 2022

LINK (OPEN ACCESS)
PDF (OPEN ACCESS)

“Isotopic anomalies in several elements, as recently observed in meteorites, are generally interpreted to indicate nonequilibrium environments in the protoplanetary disk (PPD). Here we study reported Xe isotopic compositions on planets Earth and Mars, in a comet, and in meteorites for precursor discrepancies. Abundance variations of inferred presolar nano-diamonds, the carrier phase of the Xe-HL component, appear to be the primary source of nonuniformity of Xe precursors in the PPD, together with mechanisms of mass-dependent fractionation. While planet Mars kept a record of initial solar Xe isotopic abundances, such a record is missing for planet Earth. Xe isotopic abundances in paleo-atmospheres of both planets represent secondary reservoirs that show mass-dependent fractionation effects, but the inferred compositions of their PPD precursors differ: Mars atmospheric precursor Xe had solar isotopic composition, while Earth’s Xe precursor is consistent with a PPD reservoir of low nano-diamond abundance. Strong mass-dependent fractionation effects are observed in Xe components of IAB irons and in Yamato carbonaceous (CY) chondrites, and show that fractionation mechanisms are not restricted to planetary atmospheres. These records show that Xe isotopes in solar system reservoirs are useful tracers of evolutionary processes and of nonequilibrated presolar components in the PPD.”