Petrology and shock history of the first depleted-like poikilitic shergottite Asuka 12325OPEN ACCESS 

Atsushi Takenouchi, Akira Yamaguchi, Takashi Mikouchi, Richard Greenwood, Sojiro Yamazaki

MAPS
Version of Record online: 07 September 2023

LINK (OPEN ACCESS)
PDF (OPEN ACCESS)

“Asuka (A) 12325 is the first poikilitic shergottite having a depleted pattern in light rare earth elements (REE). Compared with known poikilitic shergottites, A 12325 has smaller but more abundant pyroxene oikocrysts with remarkable Fe-rich pigeonite rims, indicating that A 12325 cooled relatively faster at a shallower part of the crust. The redox condition (logfO2 = IW + 0.6-IW + 1.7) and Fe-rich chemical compositions of each mineral in A 12325 are close to enriched shergottites. The intermediate shergottites could not form by a simple mixing between parent magmas of A 12325 and enriched shergottites. Although A 12325 contains various high-pressure minerals such as majorite and ringwoodite, plagioclase is only partly maskelynitized. Therefore, the maximum shock pressure may be within 17–22 GPa. Thermal conduction and ringwoodite growth calculation around a shock vein revealed that the shock dwell time of A 12325 is at least 40 ms. The weaker shock pressure and longer shock dwell time in A 12325 may be attained by an impact event similar to those of nakhlites and Northwest Africa (NWA) 8159. Such a weak shock ejection event may be as common on Mars as a severe shock event recorded in shergottites. Alteration of sulfide observed in A 12325 may imply the presence of magmatic fluid in its reservoir on Mars. A 12325 expands a chemical variety of Martian rocks and has a unique shock history among poikilitic shergottites while A 12325 also implies that poikilitic shergottites are common rocks on Mars regardless of their sources.”