New high-pressure Fe-Ti oxide minerals in the Shergotty Martian meteorite: Feiite, Fe2+2(Fe2+Ti4+)O5, liuite, FeTiO3, and tschaunerite, (Fe2+)(Fe2+Ti4+)O4

Chi Ma, Oliver Tschauner, John R. Beckett, Vitali B. Prakapenka

MAPS, Version of Record online: 29 December 2024

LINK

“High-pressure oxides like perovskite-type FeTiO3, CaTi2O4-type Fe2TiO4, and ferrous-ferric oxides that form polysomes between wüstite and CaFe2O4-type Fe3O4 are potential carriers of Fe, Ti, and other transition metals in the mantle and may play an important role in the redox budget of the deep Earth. Here, we report the occurrence of three of these phases as the new minerals: feiite (Sr2Tl2O5-type Fe2+2(Fe2+Ti4+)O5), liuite (FeTiO3 with a GdFeO3-type perovskite structure), and tschaunerite (CaTi2O4-type (Fe2+)(Fe2+Ti4+)O4), along with wangdaodeite (LiNbO3-type FeTiO3) in a transformed ulvöspinel clast entrained in a shock melt pocket in the Shergotty Martian meteorite. We show that reaction between the shocked ulvöspinel precursor and melt occurred at pressures between 20 and 25 GPa. The high-pressure Fe-, Ti-minerals lost Fe and O to the surrounding shock melt in exchange for Si, Mg, and Ca. Concentrations of Si and Mg in all of these clast phases and of Na in liuite are significant. They substantiate chemical interaction of the clast with melt during the shock event and highlight potential elemental distributions in complex Fe- and Ti-rich lithologies at pressures of the deep transition zone to shallow lower mantle.”