Thermal shock fragmentation of Mg silicates within scoriaceous micrometeorites reveal hydrated asteroidal sourcesOPEN ACCESS 

Matthew J. Genge, Martin Suttle, Matthias Van Ginneken

Geology (2017)
DOI:https://doi.org/10.1130/G39426.1

PDF (OPEN ACCESS)

“Gold Open Access: This paper is published under the terms of the CC-BY license

Scoriaceous micrometeorites are highly vesicular extraterrestrial dust particles that have experienced partial melting during atmospheric entry. We report the occurrence of clusters of anhedral relict forsterite crystals within these particles that testify to in situ fragmentation. The absence of similar clusters within unmelted micrometeorites suggests that fragmentation occurs during atmospheric entry rather than by parent body shock reprocessing. Clusters of broken forsterite crystals are shown to form as a result of fracturing owing to thermal stress developed during entry heating and require thermal gradients of >200 K μm–1 in order for differential thermal expansion to exceed the critical shear strength of olivine. Thermal gradients of this magnitude significantly exceed those resulting from thermal conduction and require the endothermic decomposition of phyllosilicates. Fragmented relict forsterite within scoriaceous micrometeorites, therefore, indicate that the precursor grains were similar to CI and CM2 chondrites and retained phyllosilicate prior to atmospheric entry and thus were not dehydrated on the parent asteroid by shock or thermal metamorphism. Explosive fragmentation of hydrous asteroids during collisions, therefore, does not significantly bias the interplanetary dust population.”