The nature of Earth’s building blocks as revealed by calcium isotopes

Valdes MC, Moreira M, Foriel J and Moynier F.

Earth and Planetary Science Letters
Volume 394, 15 May 2014, Pages 135–145

LINK

Calcium is the fifth most abundant element in the Earth and in chondrites and is a pure lithophile element which does not partition into planetary cores. Therefore, the calcium isotopic composition of the mantle represents the bulk Earth and calcium isotopes have the potential to reveal genetic links between Earth and meteorites. However, whether calcium exhibits significant mass-dependent variations among Earth and the various chondrite groups, and the magnitude of these variations, is still contentious. Here we have developed a new method to analyze calcium isotope ratios with high precision using multiple-collector inductively-coupled-plasma mass-spectrometry. The method has been applied to a range of terrestrial and meteoritic samples. We find that the Earth, the Moon, and the aubrite parent body are indistinguishable from enstatite, ordinary, and CO chondritic meteorites. Therefore, enstatite chondrites cannot be excluded as components of Earth’s building blocks based on calcium isotopes, as has been proposed previously. In contrast, CI, CV, CM and CR carbonaceous chondrites are largely enriched in lighter calcium isotopes compared to Earth, and, overall, exhibit a wide range in calcium isotopic composition. Calcium is the only major element, along with oxygen, for which isotopic variations are observed among carbonaceous chondrite groups. These calcium isotope variations cannot be attributed to volatility effects, and it is difficult to ascribe them to the abundance of isotopically light refractory inclusions. The calcium isotope data presented in this study suggest that both ordinary and enstatite chondrites are representative of the bulk of the refractory materials that formed Earth. On the basis of calcium isotopes, carbonaceous chondrites (with the exception of CO) are not representative of the fraction of condensable material that accreted to form the terrestrial planets and can be excluded as unique contenders for the building blocks of Earth; however, on the basis of other isotopic systems, CO chondrites can be excluded as well.