Probing the use of spectroscopy to determine the meteoritic analogues of meteorsOPEN ACCESS 

A. Drouard, P. Vernazza, S. Loehle, J. Gattacceca, J. Vaubaillon, B. Zanda, M. Birlan, S. Bouley, et al.

A&A, Forthcoming article

Accepted: 26 January 2018


Update (16 February 2018): PDF (OPEN ACCESS)

“Context. Determining the source regions of meteorites is one of the major goals of current research in planetary science. Whereas
asteroid observations are currently unable to pinpoint the source regions of most meteorite classes, observations of meteors with
camera networks and the subsequent recovery of the meteorite may help make progress on this question. The main caveat of such an
approach, however, is that the recovery rate of meteorite falls is low (<20 %), implying that the meteoritic analogues of at least 80% of the observed falls remain unknown. Aims. Spectroscopic observations of incoming bolides may have the potential to mitigate this problem by classifying the incoming meteoritic material. Methods. To probe the use of spectroscopy to determine the meteoritic analogues of incoming bolides, we collected emission spectra in the visible range (320-880 nm) of five meteorite types (H, L, LL, CM, and eucrite) acquired in atmospheric entry-like conditions in a plasma wind tunnel at the Institute of Space Systems at the University of Stuttgart (Germany). A detailed spectral analysis including a systematic line identification and mass ratio determinations (Mg/Fe, Na/Fe) was subsequently performed on all spectra. Results. It appears that spectroscopy, via a simple line identification, allows us to distinguish the main meteorite classes (chondrites, achondrites and irons) but it does not have the potential to distinguish for example an H chondrite from a CM chondrite. Conclusions. The source location within the main belt of the different meteorite classes (H, L, LL, CM, CI, etc.) should continue to be investigated via fireball observation networks. Spectroscopy of incoming bolides only marginally helps precisely classify the incoming material (iron meteorites only). To reach a statistically significant sample of recovered meteorites along with accurate orbits (>100) within a reasonable time frame (10-20 years), the optimal solution may be the spatial extension of existing fireball observation