Where Did the Ureilite Parent Body Accrete? Constraints from Chemical and Isotopic Compositions
Cyrena Goodrich, David P. O’Brien
Abstract: Almahata Sitta and other polymict ureilites contain a remarkable diversity of materials, including EH, EL, OC, R- and CB chondrites, in addition to the dominant ureilitic material [1]. These materials represent at least 6 different parent asteroids and a wide range of chemical and isotopic environments in the early Solar System. To understand the origin of this diversity it is critical to know where (heliocentric distance) the ureilite parent body (UPB) accreted. The chemical and isotopic compositions of ureilite precursors (inferred from the compositions of ureilites) can provide clues. Lithophile element ratios such as Si/Mg and Mn/Mg [2,3], and deficits in neutron-rich Cr, Ti and Ni isotopes [3], indicate that ureilite precursors were similar to ordinary or enstatite chondrites (OC or EC), not carbonaceous chondrites (CC). In contrast, high carbon contents, carbon isotopes and oxygen isotopes suggest a genetic link to CC. This poses a conundrum considering the variation of asteroid types, which suggests that EC and OC dominate the inner asteroid belt and CC the outer belt. However, the CC-like oxygen isotopes of ureilites strongly suggest the effects of parent-body aqueous alteration [4,5], which clearly implies that the UPB accreted beyond the ice line. Lithophile element properties of ureilites compared with chondrites may not be a reliable indicator of location of accretion, because lithophile elements in chondrites are sited mainly in chondrules and the UPB accreted before most chondrules formed [6]. Ureilite Cr, Ti and Ni isotopes may indicate late introduction of the neutron rich isotopes of these elements to the CC-formation region [7]. We conclude that the UPB accreted in the outer belt, like CC. The UPB or one of its offspring must have migrated to the inner belt to acquire OC, EC and R-chondrite materials.
46th Division for Planetary Sciences (DPS )Meeting
Science Schedule and Events
12 November 2014
304. Assorted Small Bodies
Chair(s): Brett Gladman (Univ. of British Columbia) and Pascal Lee (Mars Institute)
10:30 AM – 12:00 PM; Arizona Ballroom 7