Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’e-5 sample

Haiyang Xian, Jianxi Zhu, Yiping Yang, Shan Li, Xiaoju Lin, Jiaxin Xi, Jieqi Xing, Xiao Wu, Hongmei Yang, Qin Zhou, Akira Tsuchiyama, Hongping He & Yi-Gang Xu 

Nature Astronomy
Published: 09 January 2023

LINK

“Although ferric iron indisputably exists on the highly reducing surface of the Moon, its formation mechanism and evolution are still under debate. Here we show that micrometeorite impact-induced charge disproportionation of iron could have produced the large amounts of ferric iron (average Fe3+/∑Fe > 0.4) in agglutinate melts returned by China’s Chang’e-5 mission. The charge disproportionation reaction synchronously generated nanophase metallic iron (npFe0), and quantitative analyses of iron valence indicate that it is a dominant pathway for formation of npFe0 within the lunar agglutinate glass. The discovery of the charge disproportionation reaction in the agglutinates suggests that much more Fe3+ could be present on the Moon than previously thought, and that its abundance is progressively increasing with micrometeoroid impacts.”