Uracil in the carbonaceous asteroid (162173) RyuguOPEN ACCESS
Yasuhiro Oba, Toshiki Koga, Yoshinori Takano, Nanako O. Ogawa, Naohiko Ohkouchi, Kazunori Sasaki, Hajime Sato, Daniel P. Glavin, Jason P. Dworkin, Hiroshi Naraoka, Shogo Tachibana, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda & Hayabusa2-initial-analysis SOM team
Nature Communications, Volume 14, Article number: 1292
LINK (OPEN ACCESS)
PDF (OPEN ACCESS)
“The pristine sample from the near-Earth carbonaceous asteroid (162173) Ryugu collected by the Hayabusa2 spacecraft enabled us to analyze the pristine extraterrestrial material without uncontrolled exposure to the Earth’s atmosphere and biosphere. The initial analysis team for the soluble organic matter reported the detection of wide variety of organic molecules including racemic amino acids in the Ryugu samples. Here we report the detection of uracil, one of the four nucleobases in ribonucleic acid, in aqueous extracts from Ryugu samples. In addition, nicotinic acid (niacin, a B3 vitamer), its derivatives, and imidazoles were detected in search for nitrogen heterocyclic molecules. The observed difference in the concentration of uracil between A0106 and C0107 may be related to the possible differences in the degree of alteration induced by energetic particles such as ultraviolet photons and cosmic rays. The present study strongly suggests that such molecules of prebiotic interest commonly formed in carbonaceous asteroids including Ryugu and were delivered to the early Earth.”