Building Earth with pebbles made of chondritic components

Susmita Garai, Peter Olson, Zachary Sharp

Geochimica et Cosmochimica Acta
In Press, Journal Pre-proof, Available online 24 November 2024

LINK

“Pebble accretion provides new insights into Earth’s building blocks and early protoplanetary disk conditions. Here, we show that mixtures of chondritic components: metal grains, chondrules, calcium-aluminum-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs) match Earth’s major element composition (Fe, Ni, Si, Mg, Ca, Al, O) within uncertainties, whereas no combination of chondrites and iron meteorites does. Our best fits also match the ε54Cr and ε50Ti values of Earth precisely, whereas the best fits for chondrites, or components with a high proportion of E chondrules, fails to match Earth. In contrast to some previous studies, our best-fitting component mixture is predominantly carbonaceous, rather than enstatite chondrules. It also includes 16 wt% of early-formed refractory inclusions (CAIs + AOAs), which is similar to that found in some C chondrites (CO, CV, CK), but notably higher than NC chondrites. High abundances of refractory materials is lacking in NC chondrites, because they formed after the majority of refractory grains were either drawn into the Sun or incorporated into terrestrial protoplanets via pebble accretion. We show that combinations of Stokes numbers of chondritic components build 0.35–0.7 Earth masses in 2 My in the Hill regime accretion, for a typical pebble column density of 1.2 kg/m2 at 1 au. However, a larger or smaller column density leads to super-Earth or moon-mass bodies, respectively. Our calculations also demonstrate that a few My of pebble accretion with these components yields a total protoplanet mass inside 1 au exceeding the combined masses of Earth, Moon, Venus, and Mercury. Accordingly, we conclude that pebble accretion is a viable mechanism to build Earth and its major element composition from primitive chondritic components within the solar nebula lifetime.”