A statistical investigation into relationships between the IIE irons and the ordinary, F and “HH” chondritesOPEN ACCESS 

Rachel S. Kirby, Penelope L. King, Andrew G. Tomkins

MAPS, Version of Record online: 05 September 2025

LINK (OPEN ACCESS)
PDF (OPEN ACCESS)

“It has been proposed that IIE iron meteorites formed through impact processes on a parent body that was composed of either the H chondrites or a much-debated fourth ordinary chondrite group, the HH chondrites. To resolve this debate, we have compiled a large dataset for the ordinary chondrites, low-fayalite ungrouped chondrites, and IIE irons, and undertaken a statistical analysis to determine if: (1) the current classification of ordinary chondrite groups is statistically appropriate; and (2) the IIE irons are related to H chondrites or if they represent a distinct group that formed on a “HH” chondrite parent body. We demonstrate that the current classification system based on petrography and olivine and orthopyroxene chemistry is appropriate for the H, L, and LL chondrites. We define a fourth “F chondrite” group consisting of eight, previously ungrouped, very low-Fa Type 3 and 4 chondrites. Statistical analysis of Δ17O data alone cannot distinguish between the H chondrites and IIE irons, nor between the L and LL chondrites. Furthermore, statistical analyses are unable to distinguish H chondrites from IIE irons in all measures (mineral chemistry, chondrule size, bulk Δ17O, Ge and Mo isotopic compositions, and bulk siderophile element abundances in metal); there is no evidence for a “HH” chondrite group. These results are consistent with formation of IIE iron meteorites through impact melting and near-surface metal segregation on the H chondrite parent body. This genetic link between H chondrites and IIE irons allows us to understand the geochemical and petrological changes that occurred during planetary formation and evolution.”