Sulfide–Metal Assemblages on CR2 Chondrule Rims: Products of Nebular Fission–Sulfidization and Parent Body Oxidation–SerpentinizationOPEN ACCESS 

S. A. Singerling, A. J. Brearley

MAPS, Version of Record online: 02 October 2025

LINK (OPEN ACCESS)
PDF (OPEN ACCESS)

“We conducted a scanning electron microscopy (SEM) and transmission electron microscopy (TEM) study of sulfide–metal assemblages (SMAs) in minimally to moderately altered CR2 chondrites. The assemblages occur on chondrule rims and consist of kamacite cores rimmed by pyrrhotite. The kamacite and pyrrhotite share orientation relationships, arguing for a genetic link. The SMAs contain secondary alteration products, including nanoscale magnetite at the sulfide–metal interface (minimally altered SMAs) and magnetite, serpentine, nanoscale Ni-rich metal at metal–magnetite interfaces, and Ni,S-bearing reaction fronts within magnetite (moderately altered SMAs). We argue the SMAs initially formed in the solar nebula from the separation of immiscible metal and silicate melts followed by sulfidization of the metal. Aqueous alteration on the asteroidal parent body caused the kamacite to transform into magnetite and the magnetite to transform into serpentine. Alteration of kamacite to magnetite occurred under oxidizing and alkaline conditions, whereas alteration of magnetite to serpentine occurred under reducing, alkaline, and higher aSiO2 conditions. Serpentinization of magnetite appears to be a relatively common process in some carbonaceous chondrites. Additionally, theoretical and experimental studies are needed that simulate the oxidation of metal by H2O gas and water and also serpentinization of magnetite to form serpentine with variable Mg-Fe contents.”