Disintegration and Skipping Dynamics of Bilobate-Shaped Meteoroids for Generating Ultra-Long Strewn FieldsOPEN ACCESS
Haoyu Li, Ziwen Li, Qingbo Gan, Xiangyuan Zeng
Earth and Planetary Science, First published: 29 January 2026
LINK (OPEN ACCESS)
PDF (OPEN ACCESS)
“The longest known Aletai meteorite belt presents a unique phenomenon in meteoroid dynamics. To investigate its formation mechanism, this study introduces a bilobate-shaped meteoroid model, emphasizing aerodynamic interactions and structure evolution. The sintered bond model is applied to simulate the tensile, compressive, and shear strengths of the bilobate-shaped meteoroid. Its disintegration is analyzed under the combined effects of aerodynamic forces and self-rotation. After disintegration, the transverse velocity of the sub-spherical fragments is applied to track their dispersal trajectories and calculate the resulting strewn field of meteorites. The influence of aerodynamical shock wave and mass ablation is considered throughout the descent process. Numerical simulations are conducted with varying initial entry conditions, particularly focusing on the initial rotation of the bilobate-shaped meteoroid. The study focuses on the mechanism of the skipping trajectory and the associated strewn field during the meteoroid’s dynamical evolution. The results highlight the critical role of bilobate-shaped meteoroids in generating skipping trajectories and provide new insights into the formation of Aletai-like ultra-long meteorite belt.”































