Chemical characteristic of R chondrites in the light of P, REEs, Th and U abundances

Rahat Khan, Naoki Shirai, Mitsuru Ebihara

Earth and Planetary Science Letters
Volume 422, 15 July 2015, Pages 18–27


Rare earth elements (REEs), Th, U and P were determined in 15 Rumuruti (R)-type chondrites and the Allende CV chondrite. Repeated analyses of Allende for REEs, Th and U by ICP-MS and P by ICP-AES, and comparisons of these data with literature values ensure high reproducibility (precision) and reliability (accuracy) of acquired data. CI-normalized REE abundances in R chondrites are slightly enriched in heavy REEs with a small, positive Ce anomaly, in contrast to Allende. CI-normalized Pr/Tm and Nd/Yb ratios show a positive correlation, suggesting the heterogeneous mixing of two components (CI-like and refractory-rich materials) during the accretion of the R chondrite parent body. A Ce anomaly, however, was likely homogeneously present in the nebula. A mean Th/U ratio of R chondrites is View the MathML source3.81±0.13(1σ), which is 5.1% higher than the CI ratio. Probably, the Th–U fractionation was inherited from the nebula from which the R chondrite parent body formed. Besides the Th–U fractionation, REEs and Th–U are heterogeneously fractionated in R chondrites, for which parent body processing is assumed to be the cause. A mean P content of R chondrites (1254 μg/g) is higher than for any ordinary chondrite and is close to the EL mean. There appears to be a negative correlation between P and REEs contents in R chondrites. It is probable that REEs were diluted by extraneously supplied, REEs-depleted and P-containing materials (schreibersite or metal). This process must have occurred heterogeneously during accretion so that the heterogeneity of P-containing materials was preserved in the R chondrite parent body and individual R chondrites.