Impact melting of the largest known enstatite meteorite: Al Haggounia 001, a fossil EL chondrite.

Rubin, A. E.

Meteoritics & Planetary Science. doi: 10.1111/maps.12679

LINK

“Al Haggounia 001 and paired specimens (including Northwest Africa [NWA] 2828 and 7401) are part of a vesicular, incompletely melted, EL chondrite impact melt rock with a mass of ~3 metric tons. The meteorite exhibits numerous shock effects including (1) development of undulose to weak mosaic extinction in low-Ca pyroxene; (2) dispersion of metal-sulfide blebs within silicates causing “darkening”; (3) incomplete impact melting wherein some relict chondrules survived; (4) vaporization of troilite, resulting in S2 bubbles that infused the melt; (5) formation of immiscible silicate and metal-sulfide melts; (6) shock-induced transportation of the metal-sulfide melt to distances >10 cm; (7) partial resorption of relict chondrules and coarse silicate grains by the surrounding silicate melt; (8) crystallization of enstatite in the matrix and as overgrowths on relict silicate grains and relict chondrules; (9) crystallization of plagioclase from the melt; and (10) quenching of the vesicular silicate melt. The vesicular samples lost almost all of their metal during the shock event and were less susceptible to terrestrial weathering; in contrast, the samples in which the metal melt accumulated became severely weathered. Literature data indicate the meteorite fell ~23,000 yr ago; numerous secondary phases formed during weathering. Both impact melting and weathering altered the meteorite’s bulk chemical composition: e.g., impact melting and loss of a metal-sulfide melt from NWA 2828 is responsible for bulk depletions in common siderophile elements and in Mn (from alabandite); weathering of oldhamite caused depletions in many rare earth elements; the growth of secondary phases caused enrichments in alkalis, Ga, As, Se, and Au.”