Formation of Venus, Earth and Mars: Constrained by Isotopes

Helmut Lammer, Ramon Brasser, Anders Johansen, Manuel Scherf & Martin Leitzinger

Space Science Reviews
Published: 22 December 2020

Update (12 February 2021); PDF (OPEN ACCESS)

“Here we discuss the current state of knowledge of terrestrial planet formation from the aspects of different planet formation models and isotopic data from 182Hf-182W, U-Pb, lithophile-siderophile elements, 48Ca/44Ca isotope samples from planetary building blocks, recent reproduction attempts from 36Ar/38Ar, 20Ne/22Ne, 36Ar/22Ne isotope ratios in Venus’ and Earth’s atmospheres, the expected solar 3He abundance in Earth’s deep mantle and Earth’s D/H sea water ratios that shed light on the accretion time of the early protoplanets. Accretion scenarios that can explain the different isotope ratios, including a Moon-forming event ca. 50 Myr after the formation of the Solar System, support the theory that the bulk of Earth’s mass (≥80%) most likely accreted within 10–30 Myr. From a combined analysis of the before mentioned isotopes, one finds that proto-Earth accreted most likely a mass of 0.5–0.6 MEarth within the first ≈3–4.5 Myr, the approximate lifetime of the protoplanetary disk. For Venus, the available atmospheric noble gas data are too uncertain for constraining the planet’s accretion scenario accurately. However, from the available imprecise Ar and Ne isotope measurements, one finds that proto-Venus could have grown to a mass of up to 0.85–1.0 MVenus before the disk dissipated. Classical terrestrial planet formation models have struggled to grow large planetary embryos, or even cores of giant planets, quickly from the tiniest materials within the typical lifetime of protoplanetary disks. Pebble accretion could solve this long-standing time scale controversy. Pebble accretion and streaming instabilities produce large planetesimals that grow into Mars-sized and larger planetary embryos during this early accretion phase. The later stage of accretion can be explained well with the Grand-Tack model as well as the annulus and depleted disk models. The relative roles of pebble accretion and planetesimal accretion/giant impacts are poorly understood and should be investigated with N-body simulations that include pebbles and multiple protoplanets. To summarise, different isotopic dating methods and the latest terrestrial planet formation models indicate that the accretion process from dust settling, planetesimal formation, and growth to large planetary embryos and protoplanets is a fast process that occurred to a great extent in the Solar System within the lifetime of the protoplanetary disk.”