Gamma-Ray-Induced Amino Acid Formation in Aqueous Small Bodies in the Early Solar SystemOPEN ACCESS 

Yoko Kebukawa, Shinya Asano, Atsushi Tani, Isao Yoda, and Kensei Kobayashi

ACS Central Science
Publication Date: December 7, 2022


“Carbonaceous chondrites contain life’s essential building blocks, including amino acids, and their delivery of organic compounds would have played a key role in life’s emergence on Earth. Aqueous alteration of carbonaceous chondrites is a widespread process induced by the heat produced by radioactive decay of nuclides like 26Al. Simple ubiquitous molecules like formaldehyde and ammonia could produce various organic compounds, including amino acids and complex organic macromolecules. However, the effects of radiation on such organic chemistry are unknown. Hence, the effects of gamma rays from radioactive decays on the formation of amino acids in meteorite parent bodies are demonstrated here. We discovered that gamma-ray irradiation of aqueous formaldehyde and ammonia solutions afforded a variety of amino acids. The amino acid yields had a linear relationship with the total gamma-ray dose but were unaffected by the irradiation dose rates. Given the gamma-ray production rates in the meteorite parent bodies, we estimated that the production rates were reasonable compared to amino acid abundances in carbonaceous chondrites. Our findings indicate that gamma rays may contribute to amino acid formation in parent bodies during aqueous alteration. In this paper, we propose a new prebiotic amino acid formation pathway that contributes to life’s origin.”