A changing thermal regime revealed from shallow to deep basalt source melting in the MoonOPEN ACCESS 

Yash Srivastava, Amit Basu Sarbadhikari, James M. D. Day, Akira Yamaguchi & Atsushi Takenouchi

Nature Communications, Volume 13, Article number: 7594

LINK (OPEN ACCESS)
PDF (OPEN ACCESS)

“Sample return missions have provided the basis for understanding the thermochemical evolution of the Moon. Mare basalt sources are likely to have originated from partial melting of lunar magma ocean cumulates after solidification from an initially molten state. Some of the Apollo mare basalts show evidence for the presence in their source of a late-stage radiogenic heat-producing incompatible element-rich layer, known for its enrichment in potassium, rare-earth elements, and phosphorus (KREEP). Here we show the most depleted lunar meteorite, Asuka-881757, and associated mare basalts, represent ancient (~3.9 Ga) partial melts of KREEP-free Fe-rich mantle. Petrological modeling demonstrates that these basalts were generated at lower temperatures and shallower depths than typical Apollo mare basalts. Calculated mantle potential temperatures of these rocks suggest a relatively cooler mantle source and lower surface heat flow than those associated with later-erupted mare basalts, suggesting a fundamental shift in melting regime in the Moon from ~3.9 to ~3.3 Ga.”