Dense collection areas and terrestrial alteration of meteorites in the Atacama Desert

Gabriel A. Pinto, Adrien Tavernier, Jérôme Gattacceca, Alexandre Corgne, Millarca Valenzuela, Béatrice Luais, Laura Flores, Felipe Olivares, Yves Marrocchi

MAPS, Version of Record online: 04 January 2024

LINK

“In the last 15 years, more than 2700 meteorites have been recovered and officially classified from the Atacama Desert. Although the number of meteorites collected in the Atacama has risen, the physical and climatic properties of the dense collection areas (DCAs) have not been fully characterized. In this article, we compiled the published data of all classified meteorites found in the Atacama Desert to (i) describe the distribution by meteorite groups, (ii) compare the weathering degree of chondrites among different Atacama DCAs and other hot and cold deserts, and (iii) determine the preservation conditions of chondrites in the main Atacama DCAs in relation with the local climatic conditions. The 35 DCAs so far identified in the Atacama Desert are located in three main morphotectonic units: The Coastal Range (CR), Central Depression (CD), and Pre-Andean Range/Basement. A comparison with reported weathering data from other cold and hot deserts indicates that the mean terrestrial weathering of Atacama chondrites (W1–2), displays less alteration than other hot deserts (W2–3) and resembles the weathering distribution of the Antarctic meteorites (W1–2). The highest abundance of Atacama chondrites with low weathering (≤W2) is localized in the CD (78.8%, N = 1435), which is protected from the coastal fog influence and seasonal rainfalls and displays the oldest surfaces in the Atacama Desert. The morphogenetic classification based on present-day temperatures and precipitations of the main Atacama DCAs reveals similar regional/subregional climatic conditions in the most productive areas and a truly productive surface for meteorite recovery between 5% and 58% of the quadrangles formally defined for each Atacama DCA. Our morphogenetic classification lacks consideration of some meteorological parameters such as the coastal fog, so it cannot fully explain the differences in weathering patterns among CR chondrites. Future studies of chondrite preservation in the Atacama DCAs should consider other meteorological variables such as relative humidity, specific humidity, or dew point, in combination with exposure ages of meteorites and its surfaces.”