Calcium isotope evidence for the formation of early condensates in the Solar System from unmixed reservoirs with distinct nucleosynthetic originsOPEN ACCESS 

Yuki Masuda, Martin Schiller, Martin Bizzarro, Tetsuya Yokoyama

Geochimica et Cosmochimica Acta
In Press, Journal Pre-proof, Available online 15 November 2024

LINK + PDF (OPEN ACCESS)

“Calcium-aluminum rich inclusions (CAIs) are the oldest condensates in the Solar System. Previous studies have revealed that moderately heavy and trace element isotope anomalies (e.g., Ti, Sr, Mo, and Nd) in CAIs record large nucleosynthetic isotope variations compared to bulk meteorites. Calcium is a major element in CAIs that has six stable isotopes with multiple nucleosynthetic origins. As such, Ca isotopes in CAIs have been an important target of isotopic analysis since the 1970s. However, the Ca isotope compositions of CAIs measured by previous-generation mass spectrometers are less precise than recent isotopic data of heavy elements, which complicates their direct comparisons. Obtaining high-precision Ca isotopic data provides a stronger link between CAI-formation processes from nebular gas and the origin of their source materials.
In this study, we report high-precision Ca isotopic compositions of CAIs, amoeboid olivine aggregates, and an Al-rich chondrule from Vigarano-type carbonaceous chondrites. The obtained µ43Ca and µ48Ca values range from +5.8 ± 1.4 to +40.2 ± 5.2 and +181.2 ± 44.8 to +743.1 ± 8.3 ppm, respectively (µXCa represents the mass bias corrected relative deviation in the XCa/44Ca ratio of the sample from a standard material in parts per million). The improved precision of our measurements reveals that the Ca isotopic compositions of CAIs vary over a narrower range than previously thought. Our precise data also show that µ43Ca and µ48Ca values in CAIs are anti-correlated, which cannot be explained by analytical artifacts such as matrix effects. Additionally, the µ43Ca and µ48Ca values of CAIs increase and decrease, respectively, with increasing Ca abundances of the inclusions. These observations suggest the presence of two distinct gaseous reservoirs from which CAIs condensed, one of which was more enriched in 43Ca but depleted in 48Ca, while the other reservoir was more depleted in 43Ca but enriched in 48Ca. Given the distinct nucleosynthetic sources of 43Ca and 48Ca, this change in isotopic signature is best understood if the two reservoirs inherited material derived from distinct nucleosynthetic sites. As such, our results suggest the presence of more than two compositionally distinct gas reservoirs for Ca isotopes in the early Solar System. If correct, this suggests that the infalling material contributing to the CAI-forming reservoirs was not fully mixed.”