Iron XANES measurements of carbonates and phyllosilicates in CM chondrites: A record of redox conditions during aqueous alterationOPEN ACCESS
Elizabeth Bailey, Myriam Telus, Phoebe J. Lam, Samuel M. Webb
MAPS, Version of Record online: 09 August 2025
LINK (OPEN ACCESS)
PDF (OPEN ACCESS)
“Multiple generations of calcite and dolomite precipitated in CM chondrites during ice melting events that led to episodes of liquid water. Models and laboratory analysis have suggested a long-term transition from oxidizing to reducing conditions during aqueous alteration on the CM parent body. We found that synchrotron X-ray absorption near edge spectroscopy (XANES) can detect relative differences in the oxidation state of trace iron within these carbonates. In CM chondrites, previous work interpreted Mn abundance in calcite as an indicator of relatively early or late formation, and dolomite is understood to form relatively late. In the CM1 chondrite Meteorite Hills 01070, XANES maps reveal that Mn-poor calcite contains more oxidized iron relative to Mn-rich calcite. While these measurements of carbonates support increasing iron reduction with progressive aqueous alteration in MET 01070, comparison among different CM chondrites suggests a complex picture of redox evolution. In addition to carbonates, we performed XANES measurements of the phyllosilicate-rich matrix of Allan Hills 83,100. Pre-edge centroid analysis indicates that this CM1/2 has an oxidation state similar to typical CM2 chondrites. While additional measurements are warranted to confirm the full span of redox trends in CM carbonates, our data do not support a correlation between redox state and petrologic type.”































