Planetary and pre-solar noble gases in meteorites

Ulrich Ott

Chemie der Erde – Geochemistry
Volume 74, Issue 4, December 2014, Pages 519–544
Review Article
Available online 19 March 2014
doi:10.1016/j.chemer.2014.01.003

LINK

Noble gases are not rare in the Universe, but they are rare in rocks. As a consequence, it has been possible to identify in detailed analyses a variety of components whose existence is barely visible in other elements: radiogenic and cosmogenic gases produced in situ, as well as a variety of “trapped” components – both of solar (solar wind) origin and the “planetary” noble gases. The latter are most abundant in the most primitive chondritic meteorites and are distinct in elemental and isotopic abundance patterns from planetary noble gases sensu strictu, e.g., those in the atmospheres of Earth and Mars, having in common only the strong relative depletion of light relative to heavy elements when compared to the solar abundance pattern. In themselves, the “planetary” noble gases in meteorites constitute again a complex mixture of components including such hosted by pre-solar stardust grains.

The pre-solar components bear witness of the processes of nucleosynthesis in stars. In particular, krypton and xenon isotopes in pre-solar silicon carbide and graphite grains keep a record of physical conditions of the slow-neutron capture process (s-process) in asymptotic giant branch (AGB) stars. The more abundant Kr and Xe in the nanodiamonds, on the other hand, show a more enigmatic pattern, which, however, may be related to variants of the other two processes of heavy element nucleosynthesis, the rapid neutron capture process (r-process) and the p-process producing the proton-rich isotopes.

“Q-type” noble gases of probably “local” origin dominate the inventory of the heavy noble gases (Ar, Kr, Xe). They are hosted by “phase Q”, a still ill-characterized carbonaceous phase that is concentrated in the acid-insoluble residue left after digestion of the main meteorite minerals in HF and HCl acids. While negligible in planetary-gas-rich primitive meteorites, the fraction carried by “solubles” becomes more important in chondrites of higher petrologic type. While apparently isotopically similar to Q gas, the elemental abundances are somewhat less fractionated relative to the solar pattern, and they deserve further study. Similar “planetary” gases occur in high abundance in the ureilite achondrites, while small amounts of Q-type noble gases may be present in some other achondrites. A “subsolar” component, possibly a mixture of Q and solar noble gases, is found in enstatite chondrites. While no definite mechanism has been identified for the introduction of the planetary noble gases into their meteoritic host phases, there are strong indications that ion implantation has played a major role.

The planetary noble gases are concentrated in the meteorite matrix. Ca-Al-rich inclusions (CAIs) are largely planetary-gas-free, however, some trapped gases have been found in chondrules. Micrometeorites (MMs) and interplanetary dust particles (IDPs) often contain abundant solar wind He and Ne, but they are challenging objects for the analysis of the heavier noble gases that are characteristic for the planetary component. The few existing data for Xe point to a Q-like isotopic composition. Isotopically Q-Kr and Q-Xe show a mass dependent fractionation relative to solar wind, with small radiogenic/nuclear additions. They may be closer to “bulk solar” Kr and Xe than Kr and Xe in the solar wind, but for a firm conclusion it is necessary to gain a better understanding of mass fractionation during solar wind acceleration.