Composition of the northern regions of Vesta analyzed by the Dawn mission

Jean-Philippe Combe, Thomas B. McCord, Lucy A. McFadden, Simone Ieva, Federico Tosi, Andrea Longobardo, Alessandro Frigeri, Maria Cristina De Sanctis, Eleonora Ammannito, Ottaviano Ruesch, Ernesto Palomba, Carol A. Raymond, Christopher T. Russell

Icarus
In Press, available online 5 May 2015
doi:10.1016/j.icarus.2015.04.026

LINK

The surface composition of the northern regions of Vesta, observed by the Dawn spacecraft, offers the possibility to test several hypotheses related to impact-related processes. We used mostly imaging spectrometry in the visible and near infrared to assess the distribution of mafic lithologies, hydrated components and albedo properties, and use the link with howardite, eucrite and diogenite meteorites (HEDs) to investigate the origin of those materials. We established that Rheasilvia ejecta reached part of the northern regions, and have a diogenitic-rich composition characteristic of the lower crust. Investigations of the antipodes of the two major impact basins (Rheasilvia and Veneneia) did not reveal any correlation between geographic location, geological features and the surface composition. The northern wall of Mamilia crater, which is one of the freshest craters above 22°N, contains relatively pure eucritic-rich, diogenitic-rich and dark, hydrated materials, which are representative of the rest of the northern regions (and most of Vesta), with the exception of an olivine-like component found in Bellicia crater by Ammannito et al. (2013, Nature Volume 504, Issue 7478, pp. 122-125). We determined that similar types of materials are found in various proportions over a large region, including Bellicia, Arruntia and Pomponia craters, and their origin does not seem to be related to Rheasilvia ejecta. These materials are hydrated, which could indicate an exogenous origin, and not as dark as expected for carbonaceous chondrites, which likely compose the majority of dark hydrated materials on Vesta. Spectral mixture analysis reveals that mixtures of pyroxenes (hypersthene, pigeonite and diopside) could offer an alternative interpretation to olivine in this area.