Eucritic crust remnants and the effect of in-falling hydrous carbonaceous chondrites characterizing the composition of Vesta’s Marcia region

M.C. De Sanctis, J.-P. Combe, A. Ammannito, A. Frigeri, A. Longobardo, E. Palomba, F. Tosi, F. Zambon, K. Stephan, C.A. Raymond, C.T. Russell

Icarus,
In Press, Accepted Manuscript, Available online 21 May 2015
doi:10.1016/j.icarus.2015.05.014

LINK

The equatorial Marcia quadrangle region is characterized by the large, relatively young impact craters Marcia and Calpurnia and their surrounding dark ejecta field, a hill with a dark-rayed crater named Aricia Tholus, and an unusual diffuse material surrounding the impact crater Octavia. The spectral analysis indicates that while this region is relatively uniform in the pyroxene band centers, it instead shows large differences in pyroxene band depths and reflectance. A large variation of reflectance is seen in the quadrangle: bright and dark materials are present as diffuse material, and as concentrated spots and outcrops. Moreover, OH signature is pervasive in the quadrangle, with a few exceptions. The region, especially the Marcia ejecta field, is characterized by spectra showing the 2 μm band shifted at long wavelenghts. This is commonly associated with eucritic material, believed to have crystallized as lava on Vesta’s surface or within relatively shallow-level dikes and plutons, thus suggesting that this region is a remnant of the old Vestan basaltic crust. However, other characteristics of the spectra do not fully fit the eucritic composition, indicating an alternative explanation for the band center distribution, including the presence of carbonaceous chondritic material mixed with the native Vestan pyroxene.

The detailed mineralogical analysis of the Marcia quadrangle indicates that this quadrangle is the result of the mixture of the Vestan “endogenic” minerals with the “exogenic” carbonaceous chondrites. The stratigraphic units around Marcia clearly show the bright, uncontaminated material interlaced and mixed with the dark material that contains a strong OH signature. Only few small areas can be considered as representative of the old Vestan original material.