The origin of the neon isotopes in chondrites and on Earth
Manuel Moreira, Sébastien Charnoz
Earth and Planetary Science Letters
In Press, Corrected Proof, Available online 16 November 2015
doi:10.1016/j.epsl.2015.11.002
“We discuss the origin of the neon isotopic signatures in chondrites and in the terrestrial mantle. There are two primary possible origins for neon in the Earth’s mantle. One origin is the dissolution of a dense primordial atmosphere with a solar composition of 20Ne/22Ne >13.4 into the mantle in a possible magma ocean stage during Earth’s accretion. The second origin, developed in this study, is that mantle neon was already in Earth’s parent bodies because of refractory grain irradiation by solar wind. We propose that solar wind implantation occurred early on dust within the accretion disk to allow such irradiation. Because solar wind implantation fractionates neon isotopes, the heavier isotopes are implanted deeper than the lighter ones because of different kinetic energies, and the process of implantation, if coupled with sputtering, leads to a steady state neon isotopic ratio (20Ne/22Ne ∼12.7) that is similar to what is observed in mantle-derived rocks (12.5–12.9), lunar soil grains (∼12.9) and certain gas-rich chondrites from all classes (enstatite, ordinary, rumuruti). Using a dust transport model in a turbulent and irradiated solar nebula, we estimated the equivalent irradiation age of a population of dust particles at three different distances from the sun (0.8, 1, 1.2 AU) and converted these ages into neon concentrations and isotopic ratios. The dust subsequently coagulated to form Earth’s parent bodies, which have the mean neon isotopic composition of the irradiated dust (non-irradiated dust is assumed to be free of neon). If this scenario of solar wind implantation coupled with sputtering in the precursors of Earth’s parent bodies is correct, it offers a simple alternative to the model of solar nebula gas incorporation by dissolution in a magma ocean.”