On time variations of the intensity of galactic cosmic rays for the recent billion years from the data on exposure ages of iron meteorites

V. A. Alexeev

Solar System Research
January 2016, Volume 50, Issue 1, pp 24-32
First online: 22 January 2016

(Original Russian Text © V.A. Alexeev, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 1, pp. 27–36.)

LINK

“To ascertain probable variations of the intensity of galactic cosmic rays (GCR) for the recent billion years, the distribution of exposure ages T of iron meteorites has been analyzed. We considered all ~80 values of ages from the data by Voshage and Feldmann (1979), Voshage et al. (1983), and Voshage (1984), as well as a set of values obtained from the correction for eliminating the meteorites formed in a single collision. To correct the data, the Akaike information criterion was used. For the distributions of the phase values Ph = T/t–int(T/t), the dependence of the criterion χ 2 on the presumable period t in the exposure age variations was analyzed. For t ~ 400–500 Myr and, partly, for t ~ 150 Myr, the significant deviations of this criterion from the corresponding mean values were found. To clear up the influence of the GCR intensity variations on the age distribution, the numerical models were calculated with an account of the set of ages randomly distributed in the interval of 0–1000 Myr with the presumptive mean lifetime of iron meteorites in outer space τ = 700 Myr. It has been ascertained that, for variations with a period of t = 450 Myr, the distribution of exposure ages of the model set is similar to that found for iron meteorites. The obtained data suggest that the GCR intensity variations with a period of approximately 400–500 Myr have probably existed during the recent billion years. These variations may be caused by periodic passages of the Solar System through spiral arms of the Galaxy. It has been shown that the earlier discussed changes in the GCR intensity with a period of ~150 Myr (Shaviv, 2002; 2003; Scherer et al., 2006) are less defined”