The Feeding Zones of Terrestrial Planets and Insights into Moon Formation

Nathan A. Kaib, Nicolas B. Cowan

Icarus, available online 29 January 2015
doi:10.1016/j.icarus.2015.01.013

PDF LINK (full text)

LINK

These wide stochastic feeding zones have significant consequences for the origin of the Moon, since the canonical scenario predicts the Moon should be primarily composed of material from Earth’s last major impactor (Theia), yet its isotopic composition is indistinguishable from Earth. In particular, we find that the feeding zones of Theia analogs are significantly more stochastic than the planetary analogs. Depending on our assumed initial distribution of oxygen isotopes within the planetesimal disk, we find a ∼∼5% or less probability that the Earth and Theia will form with an isotopic difference equal to or smaller than the Earth and Moon’s. In fact we predict that every planetary mass body should be expected to have a unique isotopic signature. In addition, we find paucities of massive Theia analogs and high velocity moon-forming collisions, two recently proposed explanations for the Moon’s isotopic composition. Our work suggests that there is still no scenario for the Moon’s origin that explains its isotopic composition with a high probability event.